Search results for "Chaotic scattering"

showing 3 items of 3 documents

Chaotic Scattering in the Gaussian Potential

1995

It is well known that general classical Hamiltonian dynamical systems have as a rule chaotic behaviour. By such a term one usually understands a sensitive dependence on initial conditions which manifests itself in the topology of phase space. For the most studied case of bounded motions this behaviour is detected, for example, by analysing the Poincare surfaces of section and by calculating Lyapunov characteristic exponents. The question then naturally arises of what are the effects of this complexity on the unbounded motions, i.e., on scattering phenomena. The signature of chaotic dynamics in these scattering regions of phase space has been the object of several papers appeared mainly in t…

Lyapunov functionPhysicssymbols.namesakeClassical mechanicsDynamical systems theoryBounded functionChaotic scatteringPhase spacesymbolsChaoticCovariant Hamiltonian field theoryHamiltonian (quantum mechanics)
researchProduct

Unified model of fractal conductance fluctuations for diffusive and ballistic semiconductor devices

2006

We present an experimental comparison of magnetoconductance fluctuations measured in the ballistic, quasiballistic, and diffusive scattering regimes of semiconductor devices. In contradiction to expectations, we show that the spectral content of the magnetoconductance fluctuations exhibits an identical fractal behavior for these scattering regimes and that this behavior is remarkably insensitive to device boundary properties. We propose a unified model of fractal conductance fluctuations in the ballistic, quasiballistic, and diffusive transport regimes, in which the generic fractal behavior is generated by a subtle interplay between boundary and material-induced chaotic scattering events.

PhysicsCondensed matter physicsScatteringConductanceBoundary (topology)Semiconductor deviceUnified ModelCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic Materials[SPI]Engineering Sciences [physics]FractalQuantum dotChaotic scatteringStatistical physicsPhysical Review B
researchProduct

Fractal Weyl law for open quantum chaotic maps

2014

We study the semiclassical quantization of Poincar\'e maps arising in scattering problems with fractal hyperbolic trapped sets. The main application is the proof of a fractal Weyl upper bound for the number of resonances/scattering poles in small domains near the real axis. This result encompasses the case of several convex (hard) obstacles satisfying a no-eclipse condition.

[ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesSemiclassical physicsDynamical Systems (math.DS)35B34 37D20 81Q50 81U05Upper and lower boundsMSC: 35B34 37D20 81Q50 81U05Fractal Weyl lawQuantization (physics)Mathematics - Analysis of PDEs[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (miscellaneous)Fractal[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics - Dynamical SystemsQuantumMathematical physicsMathematicsScattering[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences - Chaotic DynamicsWeyl lawResonancesQuantum chaotic scattering[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Chaotic Dynamics (nlin.CD)Statistics Probability and UncertaintyOpen quantum mapComplex planeAnalysis of PDEs (math.AP)Annals of Mathematics
researchProduct